If it's not what You are looking for type in the equation solver your own equation and let us solve it.
6^2+6^2=x^2
We move all terms to the left:
6^2+6^2-(x^2)=0
We add all the numbers together, and all the variables
-1x^2+72=0
a = -1; b = 0; c = +72;
Δ = b2-4ac
Δ = 02-4·(-1)·72
Δ = 288
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{288}=\sqrt{144*2}=\sqrt{144}*\sqrt{2}=12\sqrt{2}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-12\sqrt{2}}{2*-1}=\frac{0-12\sqrt{2}}{-2} =-\frac{12\sqrt{2}}{-2} =-\frac{6\sqrt{2}}{-1} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+12\sqrt{2}}{2*-1}=\frac{0+12\sqrt{2}}{-2} =\frac{12\sqrt{2}}{-2} =\frac{6\sqrt{2}}{-1} $
| 7^2+x^2=16^2 | | 8x+0.18x=10x+0.09x | | 2a-7=a+17 | | t9=14 | | 1+4r+7r=-10 | | 4x+11=5x-20 | | 3r=669 | | 4x-(5-2x)=3x-5 | | 10^2+x^2=13^2 | | ((4t-3)/(5))-((4-2t)/(3))=1 | | 2x-9(8.5)=-25 | | 5a+55+2a+27=180 | | c+22-18=100 | | (4t-3)/(5)-(4-2t)/(3)=1 | | 2a+26=56 | | 168/x=100 | | 13x+42+13x+64+17x+82=360 | | 42=7+u/5 | | 12^2+x^2=16^2 | | -2x+17=5x-20 | | 1/2(x-8)=5x+7 | | 4.5+10m=6.14 | | 140=n−19 | | x+89+91+2x=360 | | -5x-6=-x+10 | | c/18=25 | | x+30+x+79+56+3x=360 | | 4k-3=-63 | | 16+y=-16 | | -102=6r | | c18=25 | | x+x+18+4x-9+4x-9=360 |